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As was mentioned earlier, the stellar photosphere, the “surface of a star,” is defined as the layer of its atmosphere
at an optical depth τλ = 2/3 for a given wavelength λ. But why exactly 2/3? Following Carroll & Ostlie (2006),
assuming that the optical depth τλ represents the number of photons’ mean free paths to the surface, we should see
τλ ≈ 1 into the atmosphere of a star. Those photons originating at an optically thick deeper regions at τλ � 1 will
not be able to reach the surface without being absorbed or scattered. However, why not define the surface at τλ = 0?

The surface (r = R) flux of a perfect blackbody, according to the Stefan–Boltzmann equation L = 4πR2σT 4
e and

the inverse square law F = L/4πr2, depends on the effective temperature:

Fsurf = σT 4
e . (1)

Assuming we treat stars as blackbody emitters, their surfaces can, thus, be defined as layers of their atmosphere
where T = Te, with Te coming from, for example, spectral observations. In other words, photons have to originate at
this photospheric region which is, in principle, the origin of the star’s continuum emission.

In order to find the optical depth of this layer of star’s atmosphere, we need to understand how T varies with τλ. For
this, we make a number of assumptions. First, we assume that the atmosphere is in the state of local thermodynamic
equilibrium (LTE), that is the temperature in the atmosphere does not change significantly with height. This leads to
the equality of radiative and surface fluxes: Frad = Fsurf = σT 4

e .
During the consideration of the flow of radiation in a stellar atmosphere, it is, then, convenient to assume that it

is a flat (plane-parallel) slab. This comes from the fact that the curvature radius of a star’s atmosphere significantly
exceeds its thickness. The third simplification comes from the assumption that the atmosphere is grey, that is, its
opacity is wavelength-independent and that atmospheric levels can be determined by unique values of τv.

One method to solve the equation of radiative transfer is the Eddington approximation. It assumes that the radiation
field is comprised of two streams—ingoing and outgoing—each of which is isotropic over half the hemisphere (Huang
1968). According to it, it can be shown that the mean intensity of light in a plane-parallel grey atmosphere depends
on the Frad and τv as
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The intensity of light 〈I〉 tends to become equal to the local value of the source function, which, in its turn, in
the presence of LTE, equals to the Planck function that describes the blackbody radiation curve (integrated over all
wavelengths, it is equal to σT 4/π). Thus, it can be shown that the temperature of a plane-parallel grey atmosphere
in LTE, assuming the Eddington approximation, depends on the optical depth τv and the effective temperature Te as
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At τv = 2/3, T = Te. Assuming we treat stars as blackbodies then it follows that their surfaces, from the Stefan–
Boltzmann definition of the surface of a blackbody via Te, lie at an optical depth of τv = 2/3. Thus, that layer of
stellar atmosphere at a depth τλ = 2/3 can be thought of a region where the continuum emission originates. The
definition of this depth is intrinsically connected to the Stefan–Boltzmann equation and the Planck function. The
meaning of this is that the surface of a star, its photosphere, is the origin of photons that build one of the primary
features of it as a blackbody emitter—its continuum spectrum.
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